화학공학소재연구정보센터
Solar Energy, Vol.81, No.4, 498-511, 2007
Air-cooled PV/T solar collectors with low cost performance improvements
Excess temperatures on installed photovoltaic (PV) modules lead to efficiency loss and PV cooling protects them from this undesirable efficiency drop. Both water and air have been used for PV cooling through a thermal unit attached to the back of the module yielding photovoltaic/thermal (PV/T) collector, but air is preferred due to minimal use of material and low operating cost despite its poor thermo-physical properties. This study investigates the performance of two low cost heat extraction improvement modifications in the channel of a PV/T air system to achieve higher thermal output and PV cooling so as to keep the electrical efficiency at acceptable level. The use of thin flat metal sheet suspended at the middle or finned back wall of an air channel in the PV/T air configuration are the suggested methods. A theoretical model is developed and validated against experimental data, where good agreement between the predicted results and measured data were achieved. The validated model was then used to study the effect of the channel depth, channel length and mass flow rate on electrical and thermal efficiency, PV cooling and pressure drop for both improved and typical PV/T air systems and their results were compared. Both experimental and theoretical results show that the suggested modifications improve the performance of the PV/T air system. (c) 2006 Elsevier Ltd. All rights reserved.