화학공학소재연구정보센터
Solid State Ionics, Vol.262, 578-581, 2014
Hetero-epitaxial growth of Li0.17La0.6TiO3 solid electrolyte on LiMn2O4 electrode for all solid-state batteries
A Li0.17La0.61TiO3(111)/LiMn2O4(111) solid electrolyte/electrode hetero-epitaxial system with applications in all solid-state batteries has been synthesized on a SrRuO3(111)/SrTiO3(111) substrate using pulsed laser deposition. XRD patterns provided evidence for the epitaxial growth of Li0.17La0.61TiO3(111) on LiMn2O4 at a low deposition temperature of 750 degrees C. X-ray reflectivity analysis confirmed that the low temperature deposition resulted in intimate contact between LiMn2O4 and Li0.17La0.61TiO3, although small amounts of oxygen and titanium were found to have diffused between the materials. The Li0.17La0.61TiO3/LiMn2O4 film exhibited reversible electrochemical activity between 3.0 and 4.5 V. No significant structural changes were observed in the cyded film, indicating that the Li0.17La0.61TiO3/LiMn2O4 interface is chemically and electrochemically stable during the battery reaction. The integration of electrode and solid electrolyte oxides in epitaxial multi-layer structures is expected to allow the design of new configurations for all solid-state batteries. (C) 2013 Elsevier B.V. All rights reserved.