화학공학소재연구정보센터
Renewable Energy, Vol.55, 296-304, 2013
Optimum aerodynamic design for wind turbine blade with a Rankine vortex wake
This paper presents a model to optimize the distribution of chord and twist angle of horizontal axis wind turbine blades, taking into account the influence of the wake, by using a Rankine vortex. This model is applied to both large and small wind turbines, aiming to improve the aerodynamics of the wind rotor, and particularly useful for the case of wind turbines operating at low tip-speed ratios. The proposed optimization is based on maximizing the power coefficient, coupled with the general relationship between the axial induction factor in the rotor plane and in the wake. The results show an increase in the chord and a slightly decrease in the twist angle distributions as compared to other classical optimization methods, resulting in an improved aerodynamic shape of the blade. An evaluation of the efficiency of wind rotors designed with the proposed model is developed and compared other optimization models in the literature, showing an improvement in the power coefficient of the wind turbine. Published by Elsevier Ltd.