화학공학소재연구정보센터
Renewable Energy, Vol.41, 86-95, 2012
Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells
Proton exchange membrane (PEM) fuel cell performance is directly related to the bipolar plate design and their channels pattern. Power enhancements can be achieved by optimal design of the type, size, or patterns of the channels. It has been realized that the bipolar plate design has significant role on reactant transport as well as water management in a PEM Fuel cell. Present work concentrates on improvements in the fuel cell performance by optimization of flow-field design and channels configurations. A three-dimensional, multi-component numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The simulation results showed excellent agreement with the experimental data in the previous publications. In this paper, a new bipolar plate design inspired from the existed biological fluid flow patterns in the leaf is presented and analyzed. The main design criteria in this research are based on more uniform velocity distribution and more homogeneous molar spreading of species along the flow channels and also higher voltage and power density output in different current densities. By developing a numerical code it was found that the velocity and pressure profiles on catalyst surface are much more uniform, reactant concentration on catalyst surface is very more homogeneous and the power density is higher than parallel and serpentine flow channels up to 56% and 26% respectively. (C) 2011 Elsevier Ltd. All rights reserved.