화학공학소재연구정보센터
Reactive & Functional Polymers, Vol.73, No.7, 969-978, 2013
Characteristics of zwitterionic sulfobetaine acrylamide polymer and the hydrogels prepared by free-radical polymerization and effects of physical and chemical crosslinks on the UCST
A zwitterionic sulfobetaine polymer, poly(N,N-dimethyl(acrylamidopropyl) ammonium propane sulfonate) (poly(DMAAPS)), and the hydrogels of this polymer were synthesized by free-radical polymerization in an aqueous redox system using a wide range of monomer concentrations (Cm). The resulting polymers were characterized in terms of polymer yield, intrinsic viscosity, molecular weight, gel fraction, and thermoresponsive phase-transition behavior. Parameters in the Mark-Houwink-Sakurada equation, including the molecular-weight exponent a, were determined for poly(DMAAPS) in 0.1 M NaCl aqueous solution. The physical state and transparency of the poly(DMAAPS) samples were strongly dependent on Cm and temperature. At higher values of Cm (i.e. above a critical molecular weight), poly(DMAAPS) became a gel comprising a physically crosslinked network consisting of entangled polymer chains and interchain associations of the zwitterionic groups. The poly(DMAAPS) solutions or gels exhibited a thermoresponsive phase transition with an upper critical solution temperature (UCST). The gels obtained were completely soluble in aqueous NaCl solution at ambient temperature as well as in water at temperatures above UCST. The effects of molecular weight, chemical crosslink density and copolymerization on the UCST were also elucidated. (C) 2012 Elsevier Ltd. All rights reserved.