Reactive & Functional Polymers, Vol.72, No.5, 311-316, 2012
Dopant-dependent variation in the distribution of polarons and bipolarons as charge-carriers in polypyrrole thin films synthesized by oxidative chemical polymerization
A study on the distribution of polarons vs. bipolarons as charge carriers in polypyrrole thin films doped with different dopant anions (chloride, p-toluenesulfonate and anthraquinone-2-sulfonate) is presented in this paper. The polypyrrole thin films synthesized by oxidative chemical polymerization have comparable thickness in the range of 80-100 nm. However, with the variation of the dopant anion, the conductivity of the polypyrrole thin films can differ by three orders of magnitude. The conductivity of polypyrrole thin films doped with chloride, p-toluenesulfonate and anthraquinone-2-sulfonate is 0.64 S/cm, 7.1 S/cm and 120 S/cm, respectively. The Raman spectroscopy and electron spin resonance (ESR) spectroscopy results show that (i) both polarons and bipolarons are present in the three types of polypyrrole thin films and (ii) the distribution of polarons vs. bipolarons as charge carriers in polypyrrole varies with the dopant anion used. The overall study reveals that the charge carriers in the anthraquinone-2-sulfonate-doped polypyrrole thin film are mainly spinless bipolarons, whereas the charge carriers in the chloride-doped polypyrrole thin film are dominated by paramagnetic polarons. (C) 2012 Elsevier Ltd. All rights reserved.