화학공학소재연구정보센터
Transport in Porous Media, Vol.101, No.2, 333-348, 2014
Experimental Investigation of Transitional Flow in Porous Media with Usage of a Pore Doublet Model
The transition from laminar to turbulent flow in porous media is studied with a new method. To mimic interconnected pores, a simplified geometry consisting of a pipe with a relatively large diameter that is split into two parallel pipes with different diameters is studied. This is a pore-doublet setup and the pressure drops over the parallel pipes are recorded by pressure transducers for different flow rates. Results show that the flow in the parallel pipes is redistributed when turbulent slugs pass through one of them. The presence of the slugs is revealed by positive skewness in the pressure signals as well as an increase of the standard deviation of the pressure drops and correlation between the pressure drops of the pipes. A frequency analysis of the pressure drops show that lower band frequency pressure variations in one pipe are communicated to the other pipe while higher band frequencies are filtered out.