화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.5, No.1, 1-9, March, 1999
Characterization of WO3 Supported on TiO2-ZrO2 and Catalytic Activity for Acid Catalysis
E-mail:
Tungsten oxide supported on TiO2-ZrO2 was prepared by drying powdered Ti(OH)4-Zr(OH)4 with ammonium metatungstate aqueous solution followed by calcining in air at high temperature. The characterization of prepared catalysts was performed using Fourier transform infrared (FTIR), Raman, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) and by measuring surface area. The specific surface area and acidity of WO3/50-TiO2-ZrO2 (500) increased in proportion to the tungsten oxide content up to 20 wt % due to the interaction between WO3 and TiO2-ZrO2. Since the TiO2-ZrO2 stabilizes the tungsten oxide species, for the samples equal to or less than 20 wt %, tungsten oxide was well dispersed on the surface of TiO2-ZrO2, but for the samples above 20 wt % the triclinic phase of WO3 was observed at any calcination temperature. The high acid strength and high acidity of WO3/TiO2-ZrO2 were responsible for the W=O bond nature of complex formed by the interaction between WO3 and TiO2-ZrO2. The catalytic activities of WO3/TiO2-ZrO2 catalysts for cumene dealkylation were correlated to their acidity
  1. Wainwright MS, Foster NR, Catal. Rev., 19, 211 (1979)
  2. Dadyburjor DB, Jewur SS, Ruckenstein E, Catal. Rev., 19, 293 (1979)
  3. Cheung TK, Ditri JL, Lange FC, Gates BC, Catal. Lett., 31(2-3), 153 (1995)
  4. Tanabe K, Misono M, Ono Y, Hattori H, New Solid Acids and Bases, Elsevier Science, Amsterdam (1989)
  5. Arata K, Adv. Catal., 37, 165 (1990)
  6. Ward DA, Ko EI, J. Catal., 150(1), 18 (1994)
  7. Kustov LM, Kazansky VB, Figueras F, Tichit D, J. Catal., 150(1), 143 (1994)
  8. Hsu CY, Heimbuch CR, Armes CT, Gates BC, J. Chem. Soc.-Chem. Commun., 1645 (1992)
  9. Hosoi T, Shimadzu T, Ito S, Baba S, Takaoka H, Imai T, Yokoyama N, Prepr. Symp. Div. Petr. Chem. American Chemical Society, Los Angeles, 562 (1988)
  10. Ebitani K, Konishi J, Hattori H, J. Catal., 130, 257 (1991)
  11. Lange FC, Cheung TK, Gates BC, Catal. Lett., 41(1-2), 95 (1996)
  12. Zarkalis AS, Hsu CY, Gates BC, Catal. Lett., 29(1-2), 235 (1994)
  13. Hino M, Arata K, J. Chem. Soc.-Chem. Commun., 1259 (1987)
  14. Larsen G, Lotero E, Parra RD, Proc. 11th Int. Congr. Catal., p. 533 (1996)
  15. Basrur AG, Patwardham SR, Vyas SN, J. Catal., 127, 86 (1991)
  16. Roosnaiern AJ, Koster D, Moi JC, J. Phys. Chem., 84, 3075 (1980)
  17. Karakonstantis L, Bourikas K, Lycourghiotis A, J. Catal., 162(2), 295 (1996)
  18. Grunert W, Shpiro ES, Feldhaus R, Anders K, Antoshin GV, Minachev KM, J. Catal., 107, 522 (1987)
  19. Santiesteban JG, Vartuli JC, Han S, Bastian RD, Chang CD, J. Catal., 168(2), 431 (1997)
  20. Boyse RA, Ko EI, J. Catal., 171(1), 191 (1997)
  21. Sohn JR, Park MY, J. Ind. Eng. Chem., 4(2), 84 (1998)
  22. Torravo MJ, Alario MA, Soria J, J. Catal., 86, 473 (1984)
  23. Doh IJ, Pae YI, Sohn JR, J. Korean Ind. Eng. Chem., 6(6), 1170 (1995)
  24. Larsen G, Lotero E, Petkovic LM, Shobe DS, J. Catal., 169(1), 67 (1997)
  25. Sohn JR, Ryu SG, Langmuir, 126, 9 (1993)
  26. Anderson A, Spectrosc. Lett., 9, 809 (1976)
  27. Vuurman MA, Wachs IE, Hirt AM, J. Phys. Chem., 95, 9928 (1991)
  28. Horsley JA, Wachs IE, Brown JM, Via GH, Hardcastle FD, J. Phys. Chem., 91, 4014 (1987)
  29. Chan SS, Wachs IE, Murrel LL, J. Catal., 90, 150 (1984)
  30. Tauster SJ, Fung SC, Baker RTK, Horsley JA, Science, 211, 1121 (1981)
  31. Wachs IE, Chersich EC, Hardenbergh JH, Appl. Catal., 13, 335 (1985) 
  32. Olah FGA, Prakash GKS, Sommer J, Science, 206, 13 (1979)
  33. Sohn JR, Kim HJ, J. Catal., 101, 428 (1986)
  34. Sohn JR, Cho SG, Pae YI, Hayashi S, J. Catal., 159(1), 170 (1996)
  35. Tanabe K, Misono M, Ono Y, Hattori H, New Solid Acids and Bases, Elsevier Science, Amsterdam (1989)
  36. Decanio SJ, Sohn JR, Paul PO, Lunsford JH, J. Catal., 101, 132 (1986)