화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.10, 1839-1844, October, 2014
Optimization of medium components using orthogonal arrays for γ-Linolenic acid production by Spirulina platensis
E-mail:
This work describes the medium optimization of γ-Linolenic acid (GLA) production by Spirulina platensis using one-factor and orthogonal array design methods. In the one-factor experiments, NaHCO3 (9 mg L^(-1)), NaNO3 (13.5 mg L^(-1)) and MgSO4ㆍ7H2O (11.85 mg L^(-1)) proved to be the best components for GLA production. The optimal pH for GLA production by the alga was 9.2. Based on the delta values, NaHCO3 showed the greatest effect on the GLA production of the various factors tested, followed in decreasing order by MgSO4ㆍ7H2O, NaNO3 and K2SO4. The maximum GLA yield obtained was 19.2 mgL^(-1) in the presence of optimum concentrations of NaHCO3 (20 g L^(-1)), NaNO3 (3 g L^(-1)), MgSO4ㆍ7H2O (0.5 g L^(-1)) and K2SO4 (1.5 g L^(-1)). Because of the slow growth rate of the algae, the practice of robust orthogonal array methods during the optimization of medium components can result in the production of an optimal biomass and a higher GLA yield for nutraceutical applications.
  1. Bakshi A, Mukherjee D, Bakshi A, Banerji AK, Das UN, Nutrition, 19, 305 (2003)
  2. Zurier RB, Rossetti RG, Jacobson EW, Demarco DM, Liu NY, Emming ETJ, White BM, Laposata M, Arthritis Rheum., 39, 1808 (1996)
  3. Engler MM, Schambelan M, Engler MB, Ball DL, Goodfriend TL, Proc. Soc. Exp. Biol. Med., 218, 234 (1998)
  4. Keen H, Payan J, Allawi J, Walker J, Jamal GA, Weir AI, Henderson LM, Bissessar EA, Watkins PJ, Sampson M, Diabetes Care, 16, 8 (1993)
  5. Simon D, Eng PA, Borelli S, Kagi R, Zimmermann C, Zahner C, Drewe J, Hess L, Ferrari G, Lautenschlager S, Wuthrich B, Schmid-Grendelmeier P, Adv. Ther., 1, 1 (2014)
  6. Hirano M, Mori H, Miura Y, Matsunaga N, Nakamura N, Matsunaga T, Appl. Biochem. Biotechnol., 24, 183 (1990)
  7. Cohen Z, Reungjitchachawali M, Siangdung W, Tanticharoen M, J. Appl. Phycol., 5, 109 (1993)
  8. Cohen Z, Vonshak A, Richmond A, Phytochemistry, 26, 2255 (1987)
  9. Mahajan G, Kamat M, Appl. Microbiol. Biotechnol., 43(3), 466 (1995)
  10. Carvalho JC, Bezerra RP, Matsudo MC, Sato S, Advanced Biofuels and Bioproducts, Springer, New York (2013)
  11. Costa JAV, Cozza KL, Oliveira L, Magagnin G, World J. Microb. Biot., 17, 439 (2001)
  12. Ayachi S, El Abed A, Dhifi W, Marzouk B, Ital. J. Biochem., 56, 166 (2007)
  13. Danesi EDG, Rangel-Yagui CDO, de Carvalho JCM, Sato S, Biomass Bioenerg., 23(4), 261 (2002)
  14. Evans HJ, Sorger GJ, Annu. Rev. Plant Physiol., 17, 47 (1966)
  15. Xu CP, Kim SW, Hwang HJ, Choi JW, Yun JW, Process. Biochem., 38, 1025 (2003)
  16. Daneshvar N, Khataee AR, Rasoulifard MH, Pourhassan M, J. Hazard. Mater., 143(1-2), 214 (2007)
  17. De BK, Chaudhury S, Bhattacharyya DK, J. Am. Oil Chem. Soc., 76, 153 (1999)
  18. Vonshak A, Abeliovich A, Boussiba S, Arad S, Richmond A, Biomass, 2, 175 (1982)
  19. Fagiri YMA, Salleh A, El-Nagerabi SAF, Afr. J. Biotechnol., 12, 5458 (2013)
  20. Kim K, Hoh D, Ji Y, Do H, Lee B, Holzapfel W, Biomass Bioenerg., 49, 181 (2013)
  21. Ogbonda KH, Aminigo RE, Abu GO, Bioresour. Technol., 98(11), 2207 (2007)
  22. Moriwaki H, Yamamoto H, Appl. Microbiol. Biotechnol., 97(1), 1 (2013)
  23. Bartley ML, Boeing WJ, Dungan BN, Holguin FO, Schaub T, J. Appl. Phycol., 1, 1 (2013)
  24. Shimamatsu H, Hydrobiologia, 512, 39 (2004)
  25. Dwivedi A, Maheshwari R, Syedy M, Int. J. Rec. Biotechnol., 1, 17 (2013)
  26. Kim EK, Choi GG, Kim HS, Ahn CY, Oh HM, J. Appl. Phycol., 24, 743 (2012)