화학공학소재연구정보센터
Renewable Energy, Vol.36, No.11, 2771-2775, 2011
Construction and demolition lignocellulosic wastes to bioethanol
This work deals with conversion of four construction and demolition (C&D) lignocellulosic wastes including OSB, chipboard, plywood, and wallpaper to ethanol by separate enzymatic hydrolysis and fermentation (SHF). Similar to other lignocelluloses, the wastes were resistant to the enzymatic hydrolysis, in which only up to 7% of their cellulose was hydrolyzed. Therefore, the lignocellulosic wastes were treated with phosphoric acid, sodium hydroxide, or N-methylmorpholine-N-oxide (NMMO), which resulted in improving the subsequent enzymatic hydrolysis to 38.2-94.6% of the theoretical yield. The best performance was obtained after pretreatment by concentrated phosphoric acid, followed by NMMO. The pretreated and hydrolyzed C&D wastes were then successfully fermented by baker's yeast to ethanol with 70.5-84.2% of the theoretical yields. The results indicate the possibility of producing 160 ml ethanol from each kg of the C&D wastes at the best conditions. (C) 2011 Elsevier Ltd. All rights reserved.