화학공학소재연구정보센터
Renewable Energy, Vol.31, No.13, 2076-2090, 2006
Study on a dual-mode, multi-stage, multi-bed regenerative adsorption chiller
In this paper, a detailed parametric study on a dual-mode silica gel-water adsorption chiller is performed. This advanced adsorption chiller utilizes effectively low-temperature solar or waste heat sources of temperature between 40 and 95 degrees C. Two operation modes are possible for the advanced chiller. The first operation mode will be to work as a highly efficient conventional chiller where the driving source temperature is between 60 and 95 degrees C. The second operation mode will be to work as an advanced three-stage adsorption chiller where the available driving source temperature is very low (between 40 and 60 degrees C). With this very low driving source temperature in combination with a coolant at 30 degrees C, no other cycle except an advanced adsorption cycle with staged regeneration will be operational. In this paper, the effect of chilled-water inlet temperature, heat transfer fluid flow rates and adsorption-desorption cycle time effect on cooling capacity and COP of the dual-mode chiller is performed. Simulation results show that both cooling capacity and COP values increase with the increase of chilled water inlet temperature with driving source temperature at 50 and 80 degrees C in three-stage mode, and single-stage multi-bed mode, respectively. However, the delivered chilled-water temperature increases with chilled-water inlet temperature in both modes. (c) 2005 Elsevier Ltd. All rights reserved.