Polymer, Vol.55, No.8, 2044-2050, 2014
Polybenzoxazine/single-walled carbon nanotube nanocomposites stabilized through noncovalent bonding interactions
In this study we prepared a new class of pyrene-functionalized benzoxazines (Py-BZ) through reactions of phenol, paraformaldehyde, and pyren-1-amine (Py-NH2) in toluene and EtOH. We prepared Py-NH2 through catalytic reduction of 1-nitropyrene (Py-NO2), which we had synthesized through electrophilic aromatic substitution of pyrene, using HNO3 as the nitration agent. H-1 and C-13 nuclear magnetic resonance spectroscopy and Fourier transform infrared (FTIR) spectroscopy confirmed the chemical structure of this new monomer; differential scanning calorimetry (DSC) and FTIR spectroscopy revealed the curing behavior of the Py-BZ polymers. The presence of the pyrene-functionalized benzoxazine enhanced the solubility of single-walled carbon nanotubes (SWCNTs) in THF, leading to the formation of highly dispersible Py-BZ/SWCNT organic/inorganic hybrid complex materials. Fluorescence emission spectroscopy revealed significant pi-pi stacking interactions between the Py-BZ and the SWCNTs in these complexes. In addition, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis revealed that incorporating the SWCNTs into the Py-BZ matrix significantly enhanced the thermal stability of the polymer after thermal curing. (C) 2014 Elsevier Ltd. All rights reserved.