Plasma Chemistry and Plasma Processing, Vol.34, No.5, 1141-1156, 2014
Plasma-Catalytic Oxidation of Toluene on MnxOy at Atmospheric Pressure and Room Temperature
MnxOy/SBA-15 catalysts were prepared via the impregnation method and utilized for toluene removal in dielectric barrier discharge plasma at atmospheric pressure and room temperature. The catalysts were characterized by X-ray diffraction, N-2 adsorption-desorption, Raman spectroscopy, X-ray photoelectron spectroscopy, H-2 temperature-programmed reduction, and O-2 temperature-programmed desorption methods. The characterization results indicated that manganese loading did not influence the 2D-hexagonal mesoporous structure of SBA-15. The catalyst had various oxidation states of manganese (Mn2+, Mn3+, and Mn4+), with Mn3+ being the dominant oxidation state. Toluene removal was investigated in the environment of pure N-2 and 80 % N-2 + 20 % O-2 plasma, showing that the toluene removal efficiency and CO2 selectivity were noticeably increased by MnxOy/SBA-15, especially in the presence of 5 % Mn/SBA-15. This activity was closely related to the high dispersion of 5 % Mn on SBA-15 and the lowest reduction temperature exhibited by this catalyst. Mn loading increased the yield of CO2 in the N-2 plasma and promoted the deep oxidation of toluene. During toluene oxidation, oxygen exchange might follow a pathway, wherein bulk oxygen was released from the MnxOy/SBA-15 surface; gas-phase O-2 subsequently filled up the vacancies created on the oxide. Each of the manganese oxidation states played an important role; Mn2O3 was considered as a bridge for oxygen exchange between the gas phase and the catalyst, and Mn3O4 mediated transfer of oxygen between the catalyst and toluene.