화학공학소재연구정보센터
Particulate Science and Technology, Vol.32, No.3, 215-223, 2014
Modeling of Silver Nanoparticle Synthesis in Ternary Reverse Microemulsion of Cyclohexane/Water/SDS
In the present study, a simple mathematical model has been developed for synthesis of silver nanoparticles. The silver nanoparticles have been synthesized in ternary reverse microemulsion of cyclohexane/water/sodium dodecyl sulfate (SDS). The silver nanoparticles were produced by reaction between silver nitrate in the water droplet core of one microemulsion and hydrazine as reducing agent in the water droplet core of another microemulsion. The dynamic behavior of process was modeled on mass balance equations which were solved using the finite difference method. The kinetic parameters of the critical number size (N ( crit )), rate order of nucleation, and growth constants were estimated by minimizing the difference between the average particle size predicted by model and those obtained by experiments. The UV-Vis absorption spectra, transmission electron microscopy (TEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and dynamic light scattering (DLS) were used to analyze the structure and particle size distribution of silver nanoparticles.