화학공학소재연구정보센터
Materials Science Forum, Vol.495-497, 1591-1596, 2005
Measurement and calculation of elastic properties in low carbon steel sheet
Low carbon steel (usually in sheet form) has found a wide range of applications in industry due to its high formability. The inner and outer panels of a car body are good examples of such an implementation. While low carbon steel has been used in this application for many decades, a reliable predictive capability of the forming process and "springback" has still not been achieved. NIST has been involved in addressing this and other formability problems for several years. In this paper, texture produced by the in-plane straining and its relationship to springback is reported. Low carbon steel sheet was examined in the as-received condition and after balanced biaxial straining to 25%. This was performed using the Marciniak in-plane stretching test. Both experimental measurements and numerical calculations have been utilized to evaluate anisotropy and evolution of the elastic properties during forming. We employ several techniques for elastic property measurements (dynamic mechanical analysis, static four point bending, mechanical resonance frequency measurements), and several calculation schemes (orientation distribution function averaging, finite element analysis) which are based on texture measurements (neutron diffraction, electron back scattering diffraction). The following objectives are pursued: a) To test a range of different experimental techniques for elastic property measurements in sheet metals; b) To validate numerical calculation methods of the elastic properties by experiments; c) To evaluate elastic property changes (and texture development) during biaxial straining. On the basis of the investigation, recommendations are made for the evaluation of elastic properties in textured sheet metal.