화학공학소재연구정보센터
Materials Science Forum, Vol.467-470, 1229-1235, 2004
Effect of niobiurn and titanium on the dynamic recrystallization during hot deformation of stabilized ferritic stainless steels
The study was carried out to understand the mechanisms occurring during dynamic recrystallization of hot deformed 11% chromium stabilized ferritic stainless steels and to compare the behaviour induced by various types of stabilization. It was observed that continuous dynamic recrystallization (CDRX) operates in all materials starting at the onset of straining. Niobium has a more pronounced influence on hardening than titanium during hot deformation, which is due to solid solution strengthening and also to the reduction or stopping of grain boundary migration by solute drag effect. The D2 component, {112}<111>, was found as the major texture component at the steady state for the torsion tests carried along the negative shear direction. It was likely to be formed by the combination of straining and growth of the grains exhibiting both low stored energy and low rotation rate of the crystallographic axes.