Materials Chemistry and Physics, Vol.143, No.2, 838-844, 2014
Covalent functionalization of single-walled carbon nanotubes with anthracene by green chemical approach and their temperature dependent magnetic and electrical conductivity studies
Single-walled carbon nanotubes (SWCNTs) were covalently functionalized with anthracene in molten urea by a green chemical approach. The anthracene functionalized single-walled carbon nanotubes (Ant-f-SWCNTs) were examined along with SWCNTs, using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-Ray diffraction (XRD), and scanning, and transmission electron microscopy. The observations revealed the functionalization of SWCNTs by anthracene. The temperature dependent magnetization (300-5 K) and electrical resistivity were also measured for both SWCNTs and Ant-f-SWCNTs. The electrical resistivity of Ant-f-SWCNTs at 300 K was found to be 1.27 K Omega m, which is much lower than 388.55 K Omega m for pristine. This indicated a 300 fold increase in conductivity at room temperature for Ant-f-SWCNTs when compared to SWCNTs. The temperature dependence of the conductivity provided an indication of the semiconducting behaviour. (C) 2013 Elsevier B.V. All rights reserved.