화학공학소재연구정보센터
Langmuir, Vol.30, No.8, 2161-2169, 2014
Assembly of Multivalent Protein Ligands and Quantum Dots: A Multifaceted Investigation
The development of multivalent protein ligands for nanoparticles lags behind that of multidentate polymers and small-molecule ligands largely because of a lack of thorough understanding of the interaction between nanoparticles and multimeric proteins. Guided by protein crystal structures, we have harnessed recombinant technology to develop a collection of mCherry fused multimeric proteins with different spatial distributions of the quantum dot (QD)-binding sequence, hexahistidine tag (histag). All of the proteins can behave as ligands to assemble with ZnS-CdSe QDs through metal-affinity-driven self-assembly. We have observed that protein shape and geometry greatly affect the stoichiometry and stability of their assemblies with QDs. We also demonstrate a peptide-induced structural transition of a nanobelt protein that preorganizes the QD-binding sites and effects a more efficient assembly with QDs. This work reports the first multifaceted investigation on how multivalent proteins, in particular, dimers, tetramers, and linear multidentate proteins, assemble with QDs. It also manifests our capability of harnessing structural and conformational information about proteins to design multivalent protein ligands for QD surface functionalization.