화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.136, No.29, 10246-10249, 2014
Photorelaxation Induced by Water-Chromophore Electron Transfer
Relaxation of photoexcited chromophores is a key factor determining diverse molecular properties, from luminescence to photostability. Radiationless relaxation usually occurs through state intersections caused by distortions in the nuclear geometry of the chromophore. Using excited-state nonadiabatic dynamics simulations based on algebraic diagrammatic construction, it is shown that this is the case of 9H-adenine in water cluster, but not of 7H-adenine in water cluster. 7H-adenine in water cluster relaxes via a state intersection induced by electron transfer from water to the chromophore. This result reveals an unknown reaction pathway, with implications for the assignment of relaxation mechanisms of exciton relaxation in organic electronics. The observation of photorelaxation of 7H-adenine induced by water-chromophore electron transfer is a proof of principle calling for further computational and experimental investigations to determine how common this effect is.