화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.136, No.27, 9719-9731, 2014
Catalytic Formation of Ammonia from Molecular Dinitrogen by Use of Dinitrogen-Bridged Dimolybdenum-Dinitrogen Complexes Bearing PNP-Pincer Ligands: Remarkable Effect of Substituent at PNP-Pincer Ligand
A series of dinitrogen-bridged dimolybdenum-dinitrogen complexes bearing 4-substituted PNP-pincer ligands are synthesized by the reduction of the corresponding molybdenum trichloride complexes under 1 atm of molecular dinitrogen. In accordance with a theoretical study, the catalytic activity is enhanced by the introduction of an electron-donating group to the pyridine ring of PNP-pincer ligand, and the complex bearing 4-methoxy-substituted PNP-pincer ligands is found to work as the most effective catalyst, where 52 equiv of ammonia are produced based on the catalyst (26 equiv of ammonia based on each molybdenum atom of the catalyst), together with molecular dihydrogen as a side-product. Time profiles for the catalytic reactions indicate that the rates of the formation of ammonia and molecular dihydrogen depend on the nature of the substituent on the PNP-pincer ligand of the complexes. The formation of ammonia and molecular dihydrogen is complementary in the reaction system.