화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.136, No.22, 7993-8002, 2014
Oxidation-Induced Self-Assembly of Ag Nanoshells into Transparent and Opaque Ag Hydrogels and Aerogels
The synthesis of hollow Ag nanoshells (NSs) with tunable plasmon bands in the visible spectrum and their oxidative-assembly into high-surface-area, mesoporous, transparent, and opaque Ag gel frameworks is reported. Thiolate-coated Ag NSs with varying size and shell thickness were prepared by fast chemical reduction of preformed Ag2O nanoparticles (NPs). These NSs were assembled into monolithic Ag hydrogels via oxidative removal of the surface thiolates, followed by CO2 supercritical drying to produce metallic Ag aerogels. The gelation kinetics have been controlled by tuning the oxidant/thiolate molar ratio (X) that governs the rate of NP condensation, which in turn determines the morphology, optical transparency, opacity, surface area, and porosity of the resultant gel frameworks. The monolithic Ag hydrogels prepared using high concentration of oxidant (X > 7.7) leads to oxidative etching of precursor colloids into significantly smaller NPs (3.2-7.6 nm), which appeared to eliminate the visible light scattering yielding transparent gel materials. In contrast, the opaque Ag aerogels composed entirely of hollow NSs exhibit enormously high surface areas (45-160 m(2)/g), interconnected meso-to-macro-pore network that can be tuned by varying the inner cavity of Ag colloids, and accessibility of chemical species to both inner and outer surface of the hollows, offering perspectives for a number of new technologies. An advantage of current synthesis is the ability to transform Ag NSs into monolithic hydrogels within 4-12 h, which otherwise is reported to require weeks to months for the oxidation-induced metallic gel synthesis reported to date.