Journal of the American Chemical Society, Vol.136, No.19, 6838-6841, 2014
SERS-Encoded Nanogapped Plasmonic Nanoparticles: Growth of Metallic Nanoshell by Templating Redox-Active Polymer Brushes
We report a new strategy to synthesize core-shell metal nanoparticles with an interior, Raman tag-encoded nanogap by taking advantage of nanoparticle-templated self-assembly of amphiphilic block copolymers and localized metal precursor reduction by redox-active polymer brushes. Of particular interest for surface-enhanced Raman scattering (SERS) is that the nanogap size can be tailored flexibly, with the sub-2 nm nanogap leading to the highest SERS enhancement. Our results have further demonstrated that surface functionalization of the nanogapped Au nanoparticles with aptamer targeting ligands allows for specific recognition and ultrasensitive detection of cancer cells. The general applicability of this new synthetic strategy, coupled with recent advances in controlled wet-chemical synthesis of functional nanocrystals, opens new avenues to multifunctional core-shell nanoparticles with integrated optical, electronic, and magnetic properties.