화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.136, No.5, 1842-1855, 2014
Role of the Metal in the Bonding and Properties of Bimetallic Complexes Involving Manganese, Iron, and Cobalt
A multidentate ligand platform is introduced that enables the isolation of both homo- and heterobimetallic complexes of divalent first-row transition metal ions such as Mn(II), Fe(II), and Co(II). By means of a two-step metalation strategy, five bimetallic coordination complexes were synthesized with the general formula M1M2Cl(py(3)tren), where py(3)tren is the triply deprotonated form of N,N,N-tris(2-(2-pyridylamino)ethyl)amine. The metal-metal pairings include dicobalt (1), cobalt-iron (2), cobalt-manganese (3), diiron (4), and iron-manganese (5). The bimetallic complexes have been investigated by X-ray diffraction and X-ray anomalous scattering studies, cyclic voltammetry, magnetometry, Mossbauer spectroscopy, UV-vis-NIR spectroscopy, NMR spectroscopy, combustion analyses, inductively coupled plasma optical emission spectrometry, and ab initio quantum chemical methods. Only the diiron chloride complex in this series contains a metal-metal single bond (2.29 angstrom). The others show weak metal-metal interactions (2.49 to 2.53 angstrom). The diiron complex is also distinct with a septet ground state, while the other bimetallic species have much lower spin states from S = 0 to S = 1. We propose that the diiron system has delocalized metal-metal bonding electrons, which seems to correlate with a short metal-metal bond and a higher spin state. Multiconfigurational wave function calculations revealed that, indeed, the metal-metal bonding orbitals in the diiron complex are much more delocalized than those of the dicobalt analogue.