Journal of Supercritical Fluids, Vol.88, 17-25, 2014
Measurements of the flow of supercritical carbon dioxide through short orifices
This paper describes the methods used to measure flow rate of supercritical and two-phase CO2 through short orifices. Orifices with diameters of 1 millimeter and orifice length-to-diameter ratios of 3.2 and 5 were tested. Flow rates through these orifices were measured over a broad range of inlet conditions in the supercritical region with orifice inlet pressures ranging from 5 MPa to 11 MPa and inlet densities ranging from 86.5 kg/m(3) to 630 kg/m(3). The data were compared to the isentropic real gas model for expansion of a fluid through a nozzle in order to observe the behavior of the discharge coefficient. For a given orifice inlet condition, the single-phase discharge coefficient was found to be between 0.81 and 0.87 and was independent of the pressure ratio. The discharge coefficient increased as the pressure ratio decreased when two-phase CO2 was present with orifice inlet pressures of 7.7 MPa and 9 MPa. The critical mass flow rate and critical pressure ratio were determined for each test. The raw data from this investigation are available on the internet. This paper describes the methods used to measure flow of supercritical and two-phase CO2 through short orifices. Orifices with diameters of 1 millimeter and orifice length-to-diameter ratios of 3.2 and 5 were tested. Flow rates through these orifices were measured over a broad range of inlet conditions in the supercritical region with orifice inlet pressures ranging from 7.7 MPa to 11 MPa and inlet densities ranging from 111 kg/m(3) to 630 kg/m(3). The data were compared to the isentropic real gas model for expansion of a fluid through a nozzle in order to observe the behavior of the discharge coefficient. For a given orifice inlet condition, the single-phase discharge coefficient was found to be between 0.81 and 0.87 and was independent of the pressure ratio. The discharge coefficient increased as the pressure ratio decreased when two-phase CO2 was present with orifice inlet pressures of 7.7 MPa and 9 MPa. The critical mass flow rate and critical pressure ratio were determined for each test. The raw data from this investigation are available on the internet. Published by Elsevier B.V.
Keywords:Supercritical carbon dioxide;Orifice;Two-phase flow;Discharge coefficient;Critical flow;Choked flow