Journal of Supercritical Fluids, Vol.73, 97-107, 2013
Phase equilibrium of the CO2/glycerol system: Experimental data by in situ FT-IR spectroscopy and thermodynamic modeling
Phase equilibrium experimental data for the CO2/glycerol system are reported in this paper. The measurements were performed using an in situ FT-IR method for temperatures ranging from 40 degrees C to 200 degrees C and pressures up to 35.0 MPa, allowing determination of the mutual solubility of both compounds. Concerning the CO2 rich phase, it was observed that the glycerol solubility in CO2 was extremely low (in the range of 10(-5) in mole fraction) in the pressure and temperature domains investigated here. Conversely, the glycerol rich phase dissolved CO2 at mole fractions up to 0.13. Negligible swelling of the glycerol rich phase has been observed. Modeling of the phase equilibrium has been performed using the Peng-Robinson equation of state (PR EoS) with classical van der Waals one fluid and EoS/G(E) based mixing rules (PSRK and MHV2). Satisfactory agreement was observed between modeling results and experimental measurements when PSRK mixing rules are used in combination with UNIQUAC model, although UNIFAC predictive approach gives unsatisfactory representation of experimental behavior. (C) 2012 Elsevier B.V. All rights reserved.
Keywords:Glycerol;Supercritical CO2;Biphasic system;Phase equilibrium;Infrared spectra;Thermodynamic modeling