화학공학소재연구정보센터
Journal of Process Control, Vol.24, No.5, 613-620, 2014
State space model predictive fault-tolerant control for batch processes with partial actuator failure
This paper presents a state space model predictive fault-tolerant control scheme for batch processes with unknown disturbances and partial actuator faults. To develop the model predictive fault-tolerant control, the batch process is first treated into a non-minimal representation using state space transformation. The relevant concepts of the corresponding model predictive fault-tolerant control is thus introduced through state space formulation, where improved closed-loop control performance is achieved even with unknown disturbances and actuator faults, because, unlike traditional model predictive fault-tolerant control, the proposed control method can directly regulate the process output/input changes in the design. For performance comparison, a traditional model predictive fault-tolerant control is also designed. Application to injection velocity control shows that the proposed scheme achieve the design objective well with performance improvement. (C) 2014 Elsevier Ltd. All rights reserved.