Journal of Power Sources, Vol.263, 276-279, 2014
Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries
Pure Sn nanoparticles electrode with Poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester) (PFM) conductive binder was prepared and tested in sodium ion battery. It showed higher specific capacity and higher cycling stability without any carbon black compared with Sn/CMC (carboxy methylated cellulose) and Sn/PVDF (polyvinylidene fluoride) electrode. The Sn in Sn/PFM electrodes delivered 806 mAh g(-1) at C/50 and 610 mAh g(-1) at C/10. After 10 cycles at C/10, the capacity of Sn had no decay. SEM and TEM images showed that the Sn particles in Sn/PFM electrode were still in good conductive network despite big volume change, but parts of Sn particles in Sn/CMC or Sn/PVDF electrode are electrically isolated. Published by Elsevier B.V.