Journal of Power Sources, Vol.258, 39-45, 2014
Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries
Si/C/TiO2 composite nanofibers have been prepared via a facile electrospinning method combined with a sol gel chemistry, whose electrochemical performance as anode materials in lithium-ion battery was evaluated. As-prepared nanofibers (NFs) were characterized using scanning electron microscopy, energy dispersive spectroscopy, powder X-ray diffraction and thermogravimetric analyzer to identify their morphology, phase, crystallinity and compositions. Rutile phase TiO2 nanofibers demonstrated a relatively low gravimetric specific capacity of similar to 83 mAh g(-1) when discharged at 0.1C. In contrast, composite nanofibers possess a much higher gravimetric specific capacity. When the Si to C mass ratio is of 0.217, a specific capacity as high as 720 mAh g(-1) can be attained, 94% of which can be maintained after 55 cycles. The enhanced cycling stability of micron silicon materials is attributed to the space confinement provided by the structurally stable TiO2. These findings can provide a beneficial guidance for future lithium ion battery electrode development. Published by Elsevier B.V.