Journal of Power Sources, Vol.248, 588-595, 2014
C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries
C/LiFePO4/multi-walled carbon nanotubes composite is prepared by a hybrid of hydrothermal progress that involves an in-situ multi-walled carbon nanotubes embedding approach and a facile electro-polymerization polyaniline process. The designed material on nanosize with about 100-200 nm in length contains tridimensional networks and uniform-thickness carbon layer, which remarkably enhance its electronic conductivity. The synthesized LiFePO4 composite offers a discharge capacity of 169.8 mAh g(-1) at the C/2 rate and high capacity retention at the 5C rate. Meanwhile, the well-crystallized material composed of many densely aggregated nanoparticles and interconnected nanochannels presents a high tap density leading to excellent volumetric Li storage properties at high current rates (>135 mAh cm(-3) at 20C), and stable charge/discharge cycle ability (>95% capacity retention after 200 charge/discharge cycles). As such, the prepared material with controllable size and structure yields an enhanced electrochemical performance in terms of charming rate capability, cycling life and capacity retention as a cathode in lithium-ion batteries, this non-organic facile synthesize avenue can be promising to prepare high-power electrode materials. (C) 2013 Published by Elsevier B.V.