화학공학소재연구정보센터
Journal of Power Sources, Vol.241, 634-646, 2013
Nanoparticle adhesion in proton exchange membrane fuel cell electrodes
Carbon supported platinum (Pt/C) catalyst remains among the most preferable catalyst materials for Proton Exchange Membrane (PEM) fuel cells. However, platinum (Pt) particles suffer from poor durability and encounter electrochemical surface area (ESA) loss under operation with the accompany of Pt nanoparticle coarsening. Several proposed mechanisms have involved the Pt detachment from its carbonate support as an initial step for the deactivation of Pt nanoparticles. In this study, we investigated the detachment mechanism from the nano-adhesion point of view. Classic molecular dynamics simulations are performed on systems contain Pt nanoparticles of different sizes and shapes. A thin Nafion film (1 nm) at different hydration levels is also included in the system to study the environmental effect on nanoparticle adhesion. We found that the adhesion force strengthens as the Pt size goes up. Pt nanoparticles of tetrahedral shape exhibit relatively stronger connection with the carbon substrate due to its unique 'anchor-like' structure. Adhesion is enhanced with the introduction of a Nafion. The humidity level in the Nafion film has a rather complicated effect on the strength of nanoparticle adhesion. The binding energies and maximum adhesive forces are reported for all systems studied. (C) 2013 Elsevier B.V. All rights reserved.