Journal of Power Sources, Vol.228, 214-219, 2013
Novel precursor of Mn(PO3(OH))center dot 3H(2)O for synthesizing LiMn0.5Fe0.5PO4 cathode material
A brand new method for synthesizing Mn(PO3(OH))center dot 3H(2)O is attained in this paper. During this process, pure flake-like Mn(PO3(OH))center dot 3H(2)O precipitate is prepared using C2H5OH as initiator. Besides that, LiMn0.5Fe0.5PO4/C is successfully synthesized from the Mn(PO3(OH))center dot 3H(2)O precursor at 650 C-degrees for the first time. Thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) are applied in the characterization of the Mn(PO3(OH))center dot 3H(2)O precursor and LiMn0.5Fe0.5PO4/C. High-resolution transmission electron microscopy (HRTEM) is also used to investigate the morphology of LiMn0.5Fe0.5PO4/C. X-ray photoelectron spectroscopy (XPS) and galvanostatic charge and discharge test are employed to characterize the Mn(PO3(OH))center dot 3H(2)O precursor and LiMn0.5Fe0.5PO4/C material, respectively. The as-prepared LiMn0.5Fe0.5PO4/C material exhibited a reversible capacity of 131 mAh g(-1) at 0.05 C. It can be confirmed that the incorporation of Fe into LiMnPO4 can significantly improve the electrochemical properties for improving the conductivity of the material and facilitating the Li+ diffusion. In addition, a capacity of 120 mAh g(-1) is still delivered at 0.05 C rate with a capacity retention of about 91% after 25 cycles, and reversible capacity can reach 105 mAh g(-1) at 1 C. (C) 2012 Published by Elsevier B.V.