Journal of Physical Chemistry B, Vol.118, No.32, 9768-9781, 2014
Supramolecular Interaction between a Hydrophilic Coumarin Dye and Macrocyclic Hosts: Spectroscopic and Calorimetric Study
The photophysics of a hydrophilic molecule, 7(diethylamino)-coumarin-3-carboxylic acid (7-DCCA), was studied in the presence of two macrocycles, (2-hydroxypropyl)-gamma-cyclodextrin and cucurbit[7]uril. We have used steady-state absorption, fluorescence, and time-resolved fluorescence emission spectroscopy; Fourier transform infrared (FTIR) spectroscopy; NMR spectroscopy; and isothermal titration calorimetry (ITC) to confirm the supramolecular host guest complex formation. The spectral properties of 7-DCCA were modulated in the presence of both macrocycles. It was assigned that 7-DCCA forms a 1:2 complex with (2-hydroxypropyl)-gamma-cyclodextrin and cucurbit[7]uril. The large modulation of the emission properties of 7-DCCA in the presence of the macrocycles indicates the formation of supramolecular complexes. A significant shift in the bond vibration frequencies in the FTIR studies showed encapsulation of the dyes in the hydrophobic cavity of the macrocycles. This is further substantiated by the H-1 NMR studies, in which the upfield and downfield shifts of the protons were observed in both the aliphatic and aromatic region in the presence of macrocycles. The time-resolved anisotropy measurements further reinforce the conception of host guest supramolecular complex formation because, in both cases, the rotational relaxation time increases significantly compared to that in water. A deeper understanding between the differences in interaction of an anionic molecule with cucurbit[7]uril and (2-hydroxypropyl)-gamma-cyclodextrin will be achieved through this work. From the ITC measurement, we have formulated the forces due to complex formation.