Journal of Physical Chemistry B, Vol.118, No.10, 2726-2737, 2014
On the Origin of Mesoscale Structures in Aqueous Solutions of Tertiary Butyl Alcohol: The Mystery Resolved
We have performed a detailed experimental study on aqueous solutions of tertiary butyl alcohol which were a subject of long-standing controversies regarding the puzzling presence of virtually infinitely stable large-scale structures in such solutions occurring at length scales exceeding: appreciably dimensions of individual molecules, referred to also as mesoscale structures. A combination of static and dynamic light scattering yielding information on solution structure and dynamics and gas chromatography coupled with mass spectrometry yielding information on chemical composition was used. We show that tertiary butyl alcohol clearly exhibiting such structures upon mixing with water does not contain any propylene oxide, which was previously considered as a source of these structures (an impurity expected to be present in all commercial samples of TBA). More importantly, we show that no mesoscale structures are generated upon addition of propylene oxide to aqueous solutions of TBA. The ternary system TBA/water/propylene oxide exhibits homogeneous mixing of the components on mesoscales. We show that the source of the mesoscale structures is a mesophase separation of appreciably more hydrophobic compounds than propylene oxide. These substances, are explicitly analytically identified as well as their disappearance upon filtering out the mesoscale structures by nanopore filtration. We clearly show which substances are disappearing upon filtration and which are not. This enables us to estimate with rather high probability the chemical composition of the mesoscale structures. Visualization of large-scale structures via nanoparticle tracking analysis is also presented. Video capturing the mesoscale particles as well as their Brownian motion can be found in the Supporting Information.