Journal of Physical Chemistry B, Vol.118, No.10, 2712-2718, 2014
Free Volume Model for the Unexpected Effect of C2-Methylation on the Properties of Imidazolium Ionic Liquids
For 1-alkyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imides and their cationic C2-methylated isomers, that is, [C(n)MIm]NTf2 and [C(n-1)DMIm]NTf2 (n = 3-8), the latter always has much higher viscosities (similar to 1.66 times at 25 degrees C) than the former. This finding is unexpected and contrary to the loss of the predominant hydrogen bonding between the cation and anion, caused by the C2-methylation in the imidazolium ionic liquids. In the present study, we propose a free volume model to explain this mysterious phenomenon. For the isomeric pairs, [C(n-1)DMIm]NTf2 was found to possess less unoccupied (free) volume than [C(n)MIm]NTf2 by similar to 4.5 mL mol(-1) determined by both Furth's surface tension and molar volume methods, and the free volume difference can be quantitatively correlated with the C2-methylation effect on viscosity. Generally, the less free volume in [C(n-1)DMIm]NTf2 relative to [C(n)MIm]NTf2 reduces the number of the hole carriers for molecular transport with a resulting increase in viscosity. Besides, the free volume model can also be applied to account for the C2-methylation effect on other properties, such as conductivity, surface tension, density, and refractive index.