Journal of Physical Chemistry B, Vol.118, No.4, 937-950, 2014
Critical Role of Deep Hydrogen Tunneling to Accelerate the Antioxidant Reaction of Ubiquinol and Vitamin E
In biomembranes a variety of antioxidants work to suppress oxidative damage. Vitamin E and ubiquinol are among the most important lipid-soluble antioxidants, which trap lipid peroxyl radicals directly or work cooperatively in the regeneration of vitamin E radicals by ubiquinol. Here, we investigate the latter regeneration reaction by using variational transition-state theory with multidimensional tunneling corrections. The result shows that the system forms a compact H-bonded complex by significantly rearranging the donor and acceptor moieties, which leads to a rather narrow potential barrier for H transfer and a very large tunneling effect with a transmission coefficient >4000. In accord with experiment, the Arrhenius activation energy is found to be very small (similar to 1 kcal/mol), which is interpreted here in terms of mean tunneling energy through the barrier. Regarding the electronic structure, we demonstrate that the present reaction proceeds via a proton-coupled electron transfer (PCET) mechanism and suggest that the PCET character also contributes to the large tunneling effect by sharpening the potential barrier. Finally, a systematic comparison is made among relevant reactions and it is indicated that the antioxidant defense of biomembranes may benefit rather significantly from quantum tunneling to enhance the reaction efficiency.