화학공학소재연구정보센터
Journal of Non-Newtonian Fluid Mechanics, Vol.207, 1-6, 2014
Stability of the boundary layer on a rotating disk for power-law fluids
The stability of the flow due to a rotating disk is considered for non-Newtonian fluids, specifically shearthinning fluids that satisfy the power-law (Ostwald-de Waele) relationship. In this case the basic flow is not an exact solution of the Navier-Stokes equations, however, in the limit of large Reynolds number the flow inside the three-dimensional boundary layer can be determined via a similarity solution. An asymptotic analysis is presented in the limit of large Reynolds number. It is shown that the stationary spiral instabilities observed experimentally in the Newtonian case can be described for shear-thinning fluids by a linear stability analysis. Predictions for the wavenumber and wave angle of the disturbances suggest that shear-thinning fluids may have a stabilising effect on the flow. (C) 2014 Elsevier B.V. All rights reserved.