Journal of Membrane Science, Vol.454, 133-143, 2014
Self-sustained webs of polyvinylidene fluoride electrospun nano-fibers: Effects of polymer concentration and desalination by direct contact membrane distillation
The effects of the polymer polyvinylidene fluoride (PVDF) concentration on the characteristics and direct contact membrane distillation (DCMD) desalination performance of self-sustained electrospun nanofibrous membranes (ENMs) have been studied. Different polymer concentrations ranging from 15 to 30 wt% were considered in the solvent mixture N,N-dimethyl acetamide and acetone, while all other electrospinning parameters were maintained the same. Viscosity, electrical conductivity and surface tension of the polymer solutions were measured and the effects of the PVDF concentration On fiber diameter, thickness, water contact angle, inter-fiber space, void volume fraction, liquid entry pressure, mechanical and thermal properties of the ENMs were investigated. The minimum polymer concentration, critical chain entanglement concentration, required for electrospinning beaded fibers and the concentration needed for the formation of bead-free fibers were localized. Two groups of ENMs were identified based on the surface structure of the ENMs, their void volume fraction and inter-fiber space. Bead-free ENMs, prepared with PVDF concentration higher than 22.5 wt%, exhibit higher DCMD permeate flux than the beaded ENMs. Beaded ENMs can be used in desalination by DCMD. Among the prepared ENMs, he optimized membrane exhibiting the highest DCMD performance was prepared with 25 wt% PVDF concentration. (C) 2013 Elsevier B.V. All rights reserved.
Keywords:Electrospinning;Nano-fiber;Desalination;Membrane distillation;Polyvinylidene fluoride;Polymer concentration