Journal of Loss Prevention in The Process Industries, Vol.25, No.2, 293-301, 2012
On the Minimum Ignition Temperature for the explosive Decomposition of tetrafluoroethylene on hot walls: Experiments and calculations
The Minimum Ignition Temperature of Decomposition (MITD) of tetrafluoroethylene in a partially heated pipe was analyzed for different initial pressures (5, 10 and 15 bara). The pipe used had an internal length of 1 m, an internal diameter of 30 mm with a volume of about 0.7 dm(3) and was vertically oriented. Pressure at the pipe top and temperature at four different locations along the pipe axis were measured. Tetrafluoroethylene was found to decompose at lower temperatures for increasing initial pressures, in agreement with previous tests with reactors with fully heated walls. A complete passive quenching in the non-heated part of the pipe was observed only for an initial pressure of 5 bara, while for higher initial pressures, the decomposition propagated completely along the test pipe. Moreover, the test results on the MITD were compared with data from previous experiments in fully heated 0.2 and 3 dm(3) cylindrical reactors and showed a decrease of the MITD with the heated volume through heated surface ratio of the vessel. Furthermore, the prediction of the MITD of tetrafluoroethylene by simplified calculation methods was attempted, showing a good agreement with the experimental results. (C) 2011 Elsevier Ltd. All rights reserved.