화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.274, 404-412, 2014
Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium
Increasing industrialization of multi-walled carbon nanotubes (MWCNTs) would inevitably lead to their release into the environment and combination with heavy metals. However, studies concerning the combined effects of MWCNTs and heavy metals on agricultural crops are limited. Herein, effects and mechanisms of carboxylated MWCNTs (MWCNTs-COOH) (2.5, 5 and 10 mg/L) and their combination with 20 mu M Pb and 5 mu M Cd (shortened as Pb + Cd) on Vicia faba L. seedlings were investigated. The results showed that the MWCNTs-COOH disturbed the imbalance of nutrient elements, and caused oxidative stress and damages in the leaves. Additionally, the combination of MWCNTs-COOH with Pb + Cd resulted in enrichment of Pb and Cd, and deterioration of oxidative damages compared with the treatments of MWCNTs-COOH or Pb + Cd alone in the leaves. As the results, the concentrations of MWCNTs-COOH not only caused oxidative stress, but also exacerbated the biochemical and subcellular damages due to the treatment of Pb + Cd in the leaves. It also suggests that persistent release of MWCNTs-COOH into the environment may cause phytotoxicity and aggravate ecological risks due to combination of heavy metals. (C) 2014 Elsevier B.V. All rights reserved.