Journal of Hazardous Materials, Vol.261, 235-245, 2013
Preparation and enhanced visible-light photocatalytic activity of graphitic carbon nitride/bismuth niobate heterojunctions
A series of graphitic carbon nitride/bismuth niobate (g-C3N4/Bi5Nb3O15) heterojunctions with g-C3N4 doping level of 10-90 wt% were prepared by a facile milling-heat treatment method. The phase and chemical structures, surface compositions, electronic and optical properties as well as morphologies of the prepared g-C3N4/Bi5Nb3O15 were well-characterized. Subsequently, the photocatalytic activity and stability of g-C3N4/Bi5Nb3O15 were evaluated by the degradation of aqueous methyl orange (MO) and 4-chlorophenol (4-CP) under the visible-light irradiation. At suitable g-C3N4 doping levels, g-C3N4/Bi5Nb3O15 exhibited enhanced visible-light photocatalytic activity compared with pure g-C3N4 or Bi5Nb3O15. This excellent photocatalytic activity was-revealed in terms of the extension of visible-light response and efficient separation and transportation of the photogenerated electrons and holes due to coupling of g-C3N4 and Bi5Nb3O15. Additionally, the active species yielded in the pure g-C3N4- and g-C3N4/Bi5Nb3O15-catalyzed 4-CP photodegradation systems were investigated by the free radical and hole scavenging experiments. (C) 2013 Elsevier By. All rights reserved.
Keywords:Graphitic carbon nitride;Bismuth niobate;Heterojunction;Visible-light photocatalysis;Organic pollutant