Journal of Hazardous Materials, Vol.252, 83-90, 2013
Application of bimetallic iron (BioCAT slurry) for pentachlorophenol removal from sandy soil
Bimetallic iron nanoparticles have mostly been applied to the degradation of chlorinated compounds in the aqueous phase. In this study, the degradation of pentachlorophenol (PCP) spiked into sandy soil is considered as a first exploratory step for remediating PCP in real contaminated soil using a commercial preparation of bimetallic iron (Trade name BioCAT). After 21 days of treatment a PCP removal efficiency of 90% was achieved, along with 70% dechlorination efficiency, for a dosage of 600 mg BioCAT slurry/kg soil. Degradation of PCP by BioCAT follows first order kinetics in PCP. Stepwise dechlorination is the main pathway of PCP elimination from soil slurries contacted with BioCAT. Such dechlorination is confirmed by the appearance of intermediate products, as well as by release of chlorides. Additionally, the increasing pH value and the rapid decrease of the oxidation/reduction potential (ORP) also attest to the reductive dechlorination of PCP. The reaction products comprehend lower chlorinated phenols, including three TeCP isomers, four TrCP isomers, four DCP isomers, two MCP isomers and phenol. These findings indicate that BioCAT could be applied for field treatment of PCP-contaminated soil under ambient conditions. (c) 2013 Elsevier B.V. All rights reserved.
Keywords:Pentachlorophenol;Pentachlorophenol-contaminated soil;Dechlorination;Bimetallic iron;Nanoparticles;BioCAT