Journal of Hazardous Materials, Vol.241, 154-163, 2012
Effect of the adsorbate kinetic diameter on the accuracy of the Dubinin-Radushkevich equation for modeling adsorption of organic vapors on activated carbon
This paper investigates the effect of the kinetic diameter (KD) of the reference adsorbate on the accuracy of the Dubinin-Radushkevich (D-R) equation for predicting the adsorption isotherms of organic vapors on microporous activated carbon. Adsorption isotherms for 13 organic compounds on microporous beaded activated carbon were experimentally measured, and predicted using the D-R model and affinity coefficients. The affinity coefficients calculated based on molar volumes, molecular polarizabilities, and molecular parachors were used to predict the isotherms based on four reference compounds (4.3 <= KD <= 6.8 angstrom). The results show that the affinity coefficients are independent of the calculation method if the reference and test adsorbates are from the same organic group. Choosing a reference adsorbate with a KD similar to that of the test adsorbate results in better prediction of the adsorption isotherm. The relative error between the predicted and the measured adsorption isotherms increases as the absolute difference in the kinetic diameters of the reference and test adsorbates increases. Finally, the proposed hypothesis was used to explain reports of inconsistent findings among published articles. The results from this study are important because they allow a more accurate prediction of adsorption capacities of adsorbents which allow for better design of adsorption systems. (C) 2012 Elsevier B.V. All rights reserved.
Keywords:Organic vapors;Activated carbon;Adsorption isotherm;Adsorbate kinetic diameter;D-R equation