Journal of Hazardous Materials, Vol.237, 194-198, 2012
Facilitating role of biogenetic schwertmannite in the reduction of Cr(VI) by sulfide and its mechanism
The efficient conversion of Cr(VI) to Cr(III) has attracted an increasing concern in recent years owing to its threat to the environment. In the present paper, the catalytic role of biogenetic schwertmannite in the reduction of Cr(VI) by sulfide and its mechanism were investigated under different conditions through batch experiments. The results demonstrated that schwertmannite markedly accelerated the removal of Cr(VI) by sulfide, and the rates of the reaction were enhanced by 11, 8 and 6 times, respectively at pH 7.5, 8.0 and 8.8 as compared with control (no schwertmannite). In addition, the conversion of Cr(VI) into Cr(III) increased with schwertmannite loading and temperature. However, the facilitating role of schwertmannite in the reduction of Cr(VI) by sulfide was markedly suppressed by an introduction of F-, a complex agent for Fe(III). It is concluded that the catalysis of schwertmannite results from the activated Fe(III) on the surface of schwertmannite, serving as a "bridge" in the transportation of electrons between sulfide and Cr(VI), and leading to the improving reduction of Cr(VI) by sulfide. (C) 2012 Elsevier B.V. All rights reserved.