화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.215, 191-198, 2012
Effect of fly ash on biochemical responses and DNA damage in earthworm, Dichogaster curgensis
Fly ash is receiving alarming attention due to its hazardous nature, widespread usage, and the manner of disposal; leading to environmental deterioration. We carried out bio-monitoring and risk assessment of fly ash in earthworms as a model system. Dichogaster curgensis were allowed to grow in presence or absence of fly ash (0-40%, w/w) for 1.7. and 14 d. The biochemical markers viz. catalase (CAT). superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione S-transferase (GST), and malondialdehyde (MDA) level were measured. The comet and neutral red retention assays were performed on earthworm coelomocytes to assess genetic damages and lysosomal membrane stability. The results revealed increased activities of SOD, GPx, GST, and MDA level in a dose-response manner while GR activity was decreased with increasing concentrations of fly ash. No obvious trend was observed in the CAT activity and fly ash concentration. Lysosomal membrane destabilization was noted in the earthworms exposed to 5% and more fly ash concentration in a dose and time dependent manner. The comet assay demonstrated that the fly ash induced DNA damage and DNA-protein crosslinks in earthworm coelomocytes. (C) 2012 Elsevier B.V. All rights reserved.