화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.197, 244-253, 2011
A novel polymer inclusion membrane applied in chromium (VI) separation from aqueous solutions
In the present work, we analyze the transport properties of a novel polymer inclusion membrane (PIM) containing a poly-vinyl chloride (PVC) polymer matrix and the organic anion exchanger Aliquat 336 as a specific carrier, without addition of plasticizers. The study was specifically focused on the transport properties of Cr(VI) in conditions simulating industrial wastewaters. We analyzed the impact of several parameters on the Cr(VI) transport process such as: the carrier content of the PIM, the pH, and the phases' composition. We concluded that efficient transport processes occur through a PIM containing 40% Aliquat 336/60% PVC (w/w). The process is very fast and efficient for solutions of initial Cr(VI) concentration smaller than 10(-3) mol/L, in which nearly all of Cr(VI) is removed within 3 h. The performed experiments prove that Cr(VI) transport through the membrane is a facilitated counter-transport process. The obtained results sustain that this novel non-plasticized membrane possesses enhanced transport properties towards other liquid membranes and plasticized PIMs previously reported as used for Cr(VI) transport. Additionally, it possesses an excellent reliability and a high selectivity for Cr(VI) from mixtures with other metal ions and anions existing in the real industrial effluents. The PIM characterization highlights the plasticizing role of the carrier Aliquat 336. (C) 2011 Elsevier B.V. All rights reserved.