Journal of Food Engineering, Vol.80, No.1, 276-283, 2007
Development of two-band color-mixing technique for identification of broiler carcass conditions
The development of accurate, rapid, and non-invasive inspection technologies are needed to help poultry processors meet food safety regulations and rising consumer demand while increasing productivity and economic competitiveness. This paper reports on a novel two narrow-band color-mixing technique for identification of broiler chicken carcass conditions. Spectra were collected for samples cut from the breast area of 103 wholesome chicken carcasses, 66 systemically diseased chicken carcasses, and 40 cadaver chicken carcasses using a photodiode array spectrophotometer system. Waveband pairs in the range of 416-715 nm were evaluated for identifying chicken conditions using the two-band color-mixing technique, and the pair of (453 nm, 589 nm) was selected based on color difference index calculations in CIELUV color space. Significant differences in the color characteristics of wholesome, systemically diseased, and cadaver chicken conditions, based on color-mixing using the two selected wavebands, were confirmed by one-way analysis of variance. Decision-tree classification models using the calculated color difference indexes were evaluated first by using the spectral data divided into a validation set and a testing set, and second by 10-fold cross-validation of the entire data set. Classification accuracies achieved for the wholesome, systemically diseased, and cadaver samples were 95.8%, 95.5%, and 100%, respectively, for the validation set; 94.6%, 100%, and 90.6%, respectively, for the testing set; and 98.1%, 97.5% and 93.9%, respectively, when using 10-fold cross-validation. Published by Elsevier Ltd.