화학공학소재연구정보센터
Journal of Crystal Growth, Vol.370, 323-327, 2013
Au-catalyzed synthesis and characterisation of phase change Ge-doped Sb-Te nanowires by MOCVD
The interest in the Ge doped Sb-Te chalcogenide alloy is mainly related to phase change memory applications. In view of phase change device scaling and reduction of programming energy, Sb-Te nanowires (NWs) become an attractive option. In this work, in order to investigate their potential transferability to industrial implementation, the self-assembly of Sb2Te3 NWs and Ge-Sb-Te NWs with Ge content in the range of 1-13% (Ge doping) was studied by coupling the advantages of MOCVD and the Vapour-Liquid-Solid (VLS) mechanism. The results show the structural and compositional gradual changes occurring from pure Sb2Te3 NWs to the previously reported, stoichiometric Ge1Sb2Te4 NWs [[12] M. Longo et al., Nano Lett., 12 (2012) 1509]. The typical diameter of the obtained NWs resulted to be 50 nm, with lengths up to 3 mu m. The typology of Au catalyst nanoislands influenced both the NW morphology and the Ge incorporation during the VLS self-assembly; the Ge metalorganic precursor partial pressure affected the NW morphology and their structure. Finally, TEM observations revealed that defect-free, monocrystalline Sb2Te3 and Ge-doped Sb-Te phase change NWs could be obtained.(c) 2012 Elsevier B.V. All rights reserved.