화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.428, 24-31, 2014
Effects of Ag doping on the photocatalytic disinfection of E-coli in bioaerosol by Ag-TiO2/GF under visible light
Ag doped TiO2/glass fibers (Ag-TiO2/GF) were prepared and used for photocatalytic disinfection of Escherichia coli (E. coli) in an indoor air environment. The prepared photocatalysts were characterized using scanning electron microscope (SEM) for morphology, X-ray diffraction (XRD) for microstructure, UV-Visible diffuse reflectance spectra (DRS) for optical properties and X-ray photoelectron spectroscopy (XPS) to determine elemental state. The optimized weight fraction of TiO2 in the TiO2/glass fiber (TiO2/GF) was 3%. The silver content in Ag/TiO2 was altered from 1% to 10% to investigate the optimal ratio of Ag doped on the TiO2/GF for the photocatalytic disinfection of E. coli. Doped Ag enhanced the electron-hole separation as well as charge transfer efficiency between the valance band and the conduction band of TiO2. The generated electron-hole pairs reacted with water and molecular oxygen to form strong oxidative radicals, which participated in the oxidation of organic components of E. coli, resulting in bacterial death. The photocatalytic disinfection activity under visible light increased with the increase in silver content up to 7.5% and then decreased slightly with further increasing Ag content. Among the three humidity conditions used in this study (40 +/- 5%, 60 +/- 5%, 80 +/- 5%), the highest disinfection ratio of E. coli by the photocatalytic system was observed in the intermediate humidity level followed by the high humidity level. Using the 7.5% Ag-TiO2/GF and the intermediate level of humidity (60 +/- 5%), the highest disinfection ratio and disinfection capacity of E. coli were 93.53% and 26 (CFU/s cm(2)), respectively. (C) 2014 Elsevier Inc. All rights reserved.