화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.402, 259-266, 2013
Patterning of wettability for controlling capillary-driven flow in closed channels
Glass capillaries are prepared with well-defined regions of tuneable wettability on the interior walls using an inexpensive and simple approach. A homogeneous layer of hydrophilic TiO2 nanoparticles is adsorbed on the capillary wall and chemically hydrophobized using octadecyltrihydrosilane (OTHS). The hydrophobic OTHS monolayer is then patterned by spatially-selective removal of the OTHS via TiO2-catalysed decomposition by ultraviolet irradiation. By patterning the capillaries with hydrophilic-hydrophobic rings, modulated penetration of a liquid (glycerol, in this study) can be achieved. For given wettability contrast, the penetration dynamics and equilibrium rise heights are very sensitive to the characteristic length-scale of the pattern, and may offer greater, time-dependent sampling control in fluidic devices. (c) 2013 Elsevier Inc. All rights reserved.