화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.402, 165-172, 2013
Effects of temperature on micellar-assisted bimolecular reaction of methylnaphtalene-2-sulphonate with bromide and chloride ions.
Reactivity of methyl naphthalene-2-sulphonate, MeONs, with H2O, Br- and CL- in water and in cationic micelles of cetyltrialkylammonium surfactants, n-C16H33N+R3X-, R = Me (CTA(+)), n-Pr (CTPA(+)), X = Br, Cl, CH(3)So(3), has been investigated in the temperature range 25-45 degrees C. Micellar rate effects were analysed by using the pseudophase treatment, and the second-order rate constants in the micellar pseudophase were evaluated at the various temperatures. Values of these rate constants increase with temperature, and the effect is less important in micelles than in water and more important for chloride than for bromide ions. Micelles lead to an ion behaviour discrimination, whose extent depends on surfactant type and on temperature, with maximum effect in CTPA at 25 degrees C and with bromide being always more reactive than chloride. Quantitative analysis of the temperature effect by the Eyring equation showed that micelles speed up reaction of MeONs with halide ions by decreasing the activation enthalpies, which is partially offset by decreases in the activation entropies. The rate acceleration by increase in surfactant head group size has only enthalpic origin for bromide and only entropic origin for chloride: this different behaviour was rationalised taking into account both solvation of anions and the hydrophobic effect. (C) 2013 Elsevier Inc. All rights reserved.